1 min read

P 值的统计学定义与本质(一)

一、P值的核心困惑:条件概率的方向差异

在统计推断中,P值的定义与“我们真正想推断的概率”常被混淆。参考 Shi (2018),核心是区分两个条件概率:

P(D 发生H0 为真)P(H0 为真D 发生)

其中: - H0:原假设(如“因子无超额收益”“无法区分两类事物”); - D:观测到的事件(如“因子产生显著结果”“辨识全部正确”)。

(一)P值的定义:“原假设为真时,观测到事件的概率”

P值的数学表达为: p-value=P(D is trueH0 is true)

它描述的是:若原假设H0确实成立,观测到当前事件D(或更极端事件)的概率

(二)我们真正关心的:“事件发生时,原假设为真的概率”

但实际分析中,我们更关注的是:当观测到事件D时,原假设H0为真的概率,即: P(H0 is trueD is true)

逻辑上,D是“已发生的证据”,H0是“待判断的命题”,我们需要“证据对命题的支持度”——这与P值的条件概率方向恰好相反。

(三)直观例子:条件概率的现实差异

用生活场景可直观理解两者的区别:

例子1:“上班”与“坐电梯”

  • 若“一个人上班(H)”为真,“他坐电梯(D)”的概率很高(如P(DH)=0.9);
  • 但“一个人坐电梯(D)”时,“他在上班(H)”的概率不一定高(可能是下班、回家等,即P(HD)不必然大)。

例子2:“因子超额收益”与“显著结果”

假设原假设H0:“因子不产生超额收益”;事件D:“因子表现出显著结果”。 - P值是“因子本无超额收益,却观测到显著结果的概率”(p-value=P(DH0)); - 我们真正关心的是“观测到显著结果时,因子实际无超额收益的概率”(P(H0D))。

例子3:“小概率事件与误判风险”

D是“极罕见事件”(如“数据缺失多但偶尔出现正常值的变量”),即使p-value很小,P(H0D)也可能很高——因为“罕见事件D发生”更可能是随机误差,而非H0不成立的证据。此时,错误拒绝H0的概率(假阳性率)会显著升高

二、贝叶斯化的P值:融入先验信念的推断

为了将“我们真正关心的P(H0D)”与P值关联,可通过贝叶斯公式引入“先验概率”,得到更贴合直觉的“贝叶斯化的P值”。

(一)贝叶斯公式的核心关联

贝叶斯公式基本形式: P(H0D)=P(DH0)P(H0)P(D)

其中,边缘概率P(D)可展开为: P(D)=P(DH0)P(H0)+P(DH1)P(H1)H1为备择假设,如“因子有超额收益”“能区分两类事物”)。

(二)最小贝叶斯因子与先验优势比

1. 最小贝叶斯因子(MBF)

定义最小贝叶斯因子(Minimum Bayes Factor, MBF)MBF=log(1p-value)p-valueeP(DH0)

MBF近似等价于“原假设下观测到D的概率”,是经典P值与贝叶斯推断的“桥梁”。

2. 先验优势比(Prior Odds)

定义先验优势比Prior Odds=P(H0)P(H1)

它描述“原假设为真的概率”与“备择假设为真的概率”的比值,反映我们对H0的“先验信念”(比如“更相信原假设”或“更怀疑原假设”)。

(三)贝叶斯化的P值计算

结合MBF和先验优势比,“贝叶斯化的P值”可表示为: Bayesianized p-value=MBF×Prior Odds1+MBF×Prior Odds

它的意义是:结合“原假设下观测到D的概率(MBF)”和“原假设与备择假设的先验信念(Prior Odds)”后,事件D发生时H0为真的概率

(四)直观例子:先验信念如何影响推断

通过三个“全对辨识”的例子,看先验优势比对“贝叶斯化的P值”的影响:

例子 场景描述 H0(“无法区分/无神力”)的先验信念P(H0) 贝叶斯化的P值趋势
音乐家辨乐谱 音乐家对乐曲有专业度 P(H0)高(“音乐家本就该能区分”) 较高(难拒绝H0
老妇人辨奶茶 常年喝茶有实践经验 P(H0)中等(“有经验者可能能区分”) 中等
酒馆老板猜硬币 酒精“神力”更像噱头 P(H0)低(“骗子大概率猜不对”) 较低(易拒绝H0

可见:先验信念会直接影响“贝叶斯化的P值”——若我们原本就怀疑H0(如“酒馆老板是骗子”),则观测到“全对”时,更易推断H0为假。

参考文献

Shi, Chuan. 2018. “在追逐 p-Value 的道路上狂奔,却在科学的道路上渐行渐远   .” 微信公众号“量化投资与机器学习”特约文章. April 9, 2018. https://mp.weixin.qq.com/s/VVUfui74pHcA8zMgYgsIWQ.