一、P值的核心困惑:条件概率的方向差异
在统计推断中,P值的定义与“我们真正想推断的概率”常被混淆。参考 Shi (2018),核心是区分两个条件概率:
其中: - :原假设(如“因子无超额收益”“无法区分两类事物”); - :观测到的事件(如“因子产生显著结果”“辨识全部正确”)。
(一)P值的定义:“原假设为真时,观测到事件的概率”
P值的数学表达为:
它描述的是:若原假设确实成立,观测到当前事件(或更极端事件)的概率。
(二)我们真正关心的:“事件发生时,原假设为真的概率”
但实际分析中,我们更关注的是:当观测到事件时,原假设为真的概率,即:
逻辑上,是“已发生的证据”,是“待判断的命题”,我们需要“证据对命题的支持度”——这与P值的条件概率方向恰好相反。
(三)直观例子:条件概率的现实差异
用生活场景可直观理解两者的区别:
例子1:“上班”与“坐电梯”
- 若“一个人上班()”为真,“他坐电梯()”的概率很高(如);
- 但“一个人坐电梯()”时,“他在上班()”的概率不一定高(可能是下班、回家等,即不必然大)。
例子2:“因子超额收益”与“显著结果”
假设原假设:“因子不产生超额收益”;事件:“因子表现出显著结果”。 - P值是“因子本无超额收益,却观测到显著结果的概率”(); - 我们真正关心的是“观测到显著结果时,因子实际无超额收益的概率”()。
例子3:“小概率事件与误判风险”
若是“极罕见事件”(如“数据缺失多但偶尔出现正常值的变量”),即使很小,也可能很高——因为“罕见事件发生”更可能是随机误差,而非不成立的证据。此时,错误拒绝的概率(假阳性率)会显著升高。
二、贝叶斯化的P值:融入先验信念的推断
为了将“我们真正关心的”与P值关联,可通过贝叶斯公式引入“先验概率”,得到更贴合直觉的“贝叶斯化的P值”。
(一)贝叶斯公式的核心关联
贝叶斯公式基本形式:
其中,边缘概率可展开为: (为备择假设,如“因子有超额收益”“能区分两类事物”)。
(二)最小贝叶斯因子与先验优势比
1. 最小贝叶斯因子(MBF)
定义最小贝叶斯因子(Minimum Bayes Factor, MBF):
MBF近似等价于“原假设下观测到的概率”,是经典P值与贝叶斯推断的“桥梁”。
2. 先验优势比(Prior Odds)
定义先验优势比:
它描述“原假设为真的概率”与“备择假设为真的概率”的比值,反映我们对的“先验信念”(比如“更相信原假设”或“更怀疑原假设”)。
(三)贝叶斯化的P值计算
结合MBF和先验优势比,“贝叶斯化的P值”可表示为:
它的意义是:结合“原假设下观测到的概率(MBF)”和“原假设与备择假设的先验信念(Prior Odds)”后,事件发生时为真的概率。
(四)直观例子:先验信念如何影响推断
通过三个“全对辨识”的例子,看先验优势比对“贝叶斯化的P值”的影响:
| 例子 | 场景描述 | 对(“无法区分/无神力”)的先验信念 | 贝叶斯化的P值趋势 |
|---|---|---|---|
| 音乐家辨乐谱 | 音乐家对乐曲有专业度 | 高(“音乐家本就该能区分”) | 较高(难拒绝) |
| 老妇人辨奶茶 | 常年喝茶有实践经验 | 中等(“有经验者可能能区分”) | 中等 |
| 酒馆老板猜硬币 | 酒精“神力”更像噱头 | 低(“骗子大概率猜不对”) | 较低(易拒绝) |
可见:先验信念会直接影响“贝叶斯化的P值”——若我们原本就怀疑(如“酒馆老板是骗子”),则观测到“全对”时,更易推断为假。