本文于2020-10-10更新。 如发现问题或者有建议,欢迎提交 Issue
这一次接口函数的学习,更加精进。 随便整理了一波废文件。
import json
import pandas as pd
import requests
1 json.dumps
json.dumps
的解释有一个博客写的很好,例子非常浅显易懂,这里借鉴思考。
先抛出答案,格式不同,一个是dict
,一个是str
。
dump
不讲了,实际用得少,很废。
a = {"name": "jia", "age": 24}
print a,type(a)
b = json.dumps(a)
print b,type(b)
{'age': 24, 'name': 'jia'} <type 'dict'>
{"age": 24, "name": "jia"} <type 'str'>
因此这个地方的data
本身是dict
格式的,这样一搞就是str
格式了。
data = json.dumps(data)
type(data)
str
json.loads
就是反向操作。
print type(b)
c = json.loads(b)
print type(c)
<type 'str'>
<type 'dict'>
2 requests
下面要搞懂requests
函数的意思,这里有一个很有用的入门介绍,主要用github的来测试。
2.1 对于get
path_get = "http://httpbin.org/get"
r = requests.get(path_get)
print r,type(r)
<Response [200]> <class 'requests.models.Response'>
显然r
什么都看不到。但是如果用浏览器可以看到是
{
"args": {},
"headers": {
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8",
"Accept-Encoding": "gzip, deflate",
"Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8",
"Connection": "close",
"Host": "httpbin.org",
"Upgrade-Insecure-Requests": "1",
"User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
},
"origin": "69.172.67.65",
"url": "http://httpbin.org/get"
}
对于get
常常需要加入params,这里不需要手动加,直接设置就好。
params = {'key1':'value1','key2':'value2'}
print requests.get(path_get,params=params).url
http://httpbin.org/get?key2=value2&key1=value1
这样就不需要手打问号了。
2.2 试试post
r = requests.post("http://httpbin.org/post")
print r,type(r)
<Response [200]> <class 'requests.models.Response'>
要是想查看格式的话,用.text
print r.text,type(r.text),r.content,type(r.content)
{
"args": {},
"data": "",
"files": {},
"form": {},
"headers": {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Connection": "close",
"Content-Length": "0",
"Host": "httpbin.org",
"User-Agent": "python-requests/2.14.2"
},
"json": null,
"origin": "69.172.67.65",
"url": "http://httpbin.org/post"
}
<type 'unicode'> {
"args": {},
"data": "",
"files": {},
"form": {},
"headers": {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Connection": "close",
"Content-Length": "0",
"Host": "httpbin.org",
"User-Agent": "python-requests/2.14.2"
},
"json": null,
"origin": "69.172.67.65",
"url": "http://httpbin.org/post"
}
<type 'str'>
所以.content
是帮助转化成str
格式了。
2.3 其他
print r.encoding
None
print r.json(),type(r.json())
{u'files': {}, u'origin': u'69.172.67.65', u'form': {}, u'url': u'http://httpbin.org/post', u'args': {}, u'headers': {u'Content-Length': u'0', u'Accept-Encoding': u'gzip, deflate', u'Host': u'httpbin.org', u'Accept': u'*/*', u'User-Agent': u'python-requests/2.14.2', u'Connection': u'close'}, u'json': None, u'data': u''} <type 'dict'>
这样就是字典格式了。
加入headers
的.post
情况。
payload = {'key1': 'value1', 'key2': 'value2'}
r = requests.post("http://httpbin.org/post", data=payload)
print r.text
{
"args": {},
"data": "",
"files": {},
"form": {
"key1": "value1",
"key2": "value2"
},
"headers": {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Connection": "close",
"Content-Length": "23",
"Content-Type": "application/x-www-form-urlencoded",
"Host": "httpbin.org",
"User-Agent": "python-requests/2.14.2"
},
"json": null,
"origin": "69.172.67.65",
"url": "http://httpbin.org/post"
}
还是有点不懂,到底是怎么取用的呢?
r.headers
{'Content-Length': '463', 'X-Processed-Time': '0', 'X-Powered-By': 'Flask', 'Server': 'meinheld/0.6.1', 'Connection': 'keep-alive', 'Via': '1.1 vegur', 'Access-Control-Allow-Credentials': 'true', 'Date': 'Wed, 21 Mar 2018 12:27:14 GMT', 'Access-Control-Allow-Origin': '*', 'Content-Type': 'application/json'}
3 实战
3.1 M站表
headers = {"Content-type": "application/json", "Accept": "application/json"}
timeout = 10
# url = "http://loansd.ppdapi.com/Lightning/QueryService/QueryListingAutoFlowUserProcess"
for item in [24064633,24739192]:
data = {
"UserIds": [int(item)]
}
data1 = json.dumps(data, ensure_ascii=False)
response = requests.post(url, data1, headers=headers, timeout=timeout).text
response= response.encode('utf-8')
type(response)
str
但是我们熟悉的都是dict
\(\to\)pd.DataFrame
。
type(json.loads(response))
response = json.loads(response)
#response[u'Result']
这里保护用户隐私就不显示了。
df = pd.DataFrame().from_dict(response[u'Result'])
这个地方主义response
的第一个keys
才是一个我们真正需要的dict
。
那么多没有意义的变量,选择一下好了。我们需要时间,这个时候通过阅读cookbook知道,使用filter函数就好。
#pd.concat([df.filter(like = "UserId"), df.filter(like = "Time")], axis = 1)
这里保护用户隐私就不显示了。
完美.
这种回传出来,是这种乱糟糟格式的是啥情况,不是str
,也不是dict
3.2 芝麻分
headers = {"Content-type": "application/json", "Accept": "application/json"}
timeout = 10
# url = "http://3rdreadapi.ppdapi.com/queryData"
data = {
"options": "zhimaquery",
"version": "1.0.0",
"async": "1",
"atom": 0,
"role": 0
}
data = json.dumps(data)
这个地方陈建说,data
要限制为str
格式,不能是dict
。
否则,400 请求格式错误
。
这是开发文档。
response = requests.post(url, data, headers=headers, timeout=timeout).text
type(response)
response
这里保护用户隐私就不显示了。